Biocredit Rapigen One Step Rapid Test

Biocredit Covid-19 Ag Detection Kit

Description

Lateral motion immunochromatographic assay that adopted twin color system.
For the qualitative detection of SARS-CoV-2 antigen from nasopharyngeal swab specimen.
The examine incorporates colloid gold conjugate pad and a membrane strip pre-coated with antibodies explicit to SARS-CoV-2 antigen on the examine traces (T).
A visible black band (antibody-antigen-antibody gold conjugate sophisticated) appears on the examine traces (T) If SARS-CoV-2 antigen is present throughout the specimen.
The administration line (C) reveals that examine is carried out appropriately.
Evaluated with panel specimen (n = 75) by PCR
Sensitivity: 90,2 %
Specificity: 100 %

SKU:G61RHA20

AVAILABILITY:In Stock with The Lowest Price throughout the Market

SHIPMENT:Related Day Cargo Orders Sooner than 14

H00SIZE:20 Exams/KitSPECIFICITY:98.90%

Kind

Immunochromatography speedy examine

Guidance for use of VITROS SARS CoV2 Antigen CLIA based totally Examine from Ortho Medical

Diagnostics

1. The VITROS SARS CoV2 Antigen assay is a chemiluminescent immunoassay meant for the qualitative
detection of SARS-CoV-2 nucleocapsid antigens in nasopharyngeal (NP) specimens from individuals who
are suspected of COVID-19 inside one to five days of the onset of indicators, or mid-turbinate specimens
collected from asymptomatic individuals.
2. The assay should be carried out in VITROS 3600 Immunodiagnostics system or VITROS 5600 / VITROS XT 7600
Constructed-in system from Ortho.

Features

COVID-19, Nasopharyngeal swabs

Calibration Fluctuate

Qualitative

Biocredit Antigen Test
Biocredit Antigen Take a look at

VITROS SARS CoV2 antigen assay – Procedural Steps: –

Stage 1: Nasopharyngeal swab specimen assortment:
1. Purchase a nasopharyngeal swab specimen by inserting the sterile swab into the nostril.
2. Push the sterile swab until resistance is met on the stage of the turbinate.
3. Rotate the sterile swab various events in direction of the nasopharyngeal wall & go away throughout the place for
10 seconds to saturate the swab tip.
4. Take away the swab from the nostril fastidiously.
5. Place the swab specimen into the viral transport medium buffer tube and shut the tube tightly.
6. Transport the swab sample in VTM to the laboratory in a cold chain.
7. The sample could possibly be saved in Room temperature (Beneath 30◦C) for as a lot as 24 hrs from the time of
sample assortment or at 2 – 8◦C for as a lot as 48 hrs from the time of sample assortment.

Stage 2: Sample preparation for testing:

1. Sample preparation have to be carried out in BSL-2 stage cabinet throughout the Laboratory.
2. Mix the swab specimen in VTM tube properly (vortex roughly 3-5 seconds).
3. Swap 100 μL VITROS SARS-CoV-2 Antigen Extraction Buffer proper right into a labelled new sample tube.
4. Add 400 μL viral sample to the above tube (to care for 1:4 ratio of extraction buffer: sample)
5. Mix properly (Cap/Plug the sample tube and vortex roughly 3-5 seconds).

Panbio™ COVID-19 Ag Rapid Test Device (Nasal)

41FK11 25 Tests/Kit
EUR 114
Description: The Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is a β -coronavirus, which is an enveloped non-segmented positive-sense RNA virus 2. It is spread by human-to-human transmission via droplets or direct contact, and infection has been estimated to have a mean incubation period of 6.4 days and a basic reproduction number of 2.24-3.58. Among patients with pneumonia caused by SARS-CoV-2, fever was the most common symptom, followed by cough3. The main IVD assays used for COVID-19 employ real-time reverse transcriptase-polymerase chain reaction (RT-PCR) that takes a few hours 4. The availability of a cost-effective, rapid point- of-care diagnostic test is critical to enable healthcare professionals to aid in the diagnosis of patients and prevent further spread of the virus5. Antigen tests will play a critical role in the fight against COVID-19

Purified Dog CRP | AG-40CRP

AG-40CRP 1.0 mg
EUR 1120
Description:

Purified Dog CRP | AG-40CRP | Immunology Consultants Laboratory

Species Reactivity: Dog

Format: Unconjugated

Product Type: Protein Standard

Source: N/A

Purified Bovine CRP- Recombinant | AG-10CRP

AG-10CRP 1.0 mg
EUR 1423
Description:

Purified Bovine CRP- Recombinant | AG-10CRP | Immunology Consultants Laboratory

Species Reactivity: CHO

Format: Unconjugated

Product Type: Protein Standard

Source: N/A

COVID-19 IgG & IgM antibody

GEN-50001-50tests 50 tests
EUR 388.8
Description: A rapid test for detection of antibodies (IgG and IgM) for 2019-nCoV, the novel Coronavirus from the Wuhan strain. The test is easy to perform, takes 10 minutes to provide reliable results and is higly specific to the 2019-nCoV Coronavirus.

Purified Dog CRP - Recombinant | AG-40CRP-REC

AG-40CRP-REC 1.0 mg
EUR 1423
Description:

Purified Dog CRP - Recombinant | AG-40CRP-REC | Immunology Consultants Laboratory

Species Reactivity: CHO

Format: Unconjugated

Product Type: Protein Standard

Source: N/A

Purified Human IL-6 Protein | AG-80LK6-Z

AG-80LK6-Z 0.1 mg
EUR 750
Description:

Purified Human IL-6 Protein | AG-80LK6-Z | Immunology Consultants Laboratory

Species Reactivity: Human

Format: Unconjugated

Product Type: Protein Standard

Source: N/A

SARS-CoV-2 (COVID-19) Spike Antibody

3525-002mg 0.02 mg
EUR 206.18
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Spike Antibody

3525-01mg 0.1 mg
EUR 523.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a Spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Coronavirus invades cells through Spike (S) glycoproteins, a class I fusion protein. It is the major viral surface protein that coronavirus uses to bind to the human cell surface receptor. It also mediates the fusion of host and viral cell membrane, allowing the virus to enter human cells and begin infection (3). The spike protein is the major target for neutralizing antibodies and vaccine development (4). The protein modeling suggests that there is strong interaction between Spike protein receptor-binding domain and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of COVID-19 (5). The recent study has shown that the SARS-CoV-2 spike protein binds ACE2 with higher affinity than SARS-CoV spike protein (6).

SARS-CoV-2 (COVID-19) Envelope Antibody

3531-002mg 0.02 mg
EUR 206.18
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) Envelope Antibody

3531-01mg 0.1 mg
EUR 523.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. Envelope protein is a small polypeptide that contains at least one alpha-helical transmembrane domain. It involves in several aspects of the virus's life cycle, such as assembly, budding, envelope formation, and pathogenesis. E protein has membrane permeabilizing activity, which provides a possible rationale to inhibit in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication (3).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9099-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9099-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9103-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) Nucleocapsid Antibody

9103-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2). Nucleocapsid (N) protein is the most abundant protein of coronavirus. It is also one of the major structural proteins and is involved in the transcription and replication of viral RNA, packaging of the encapsidated genome into virions (3), and interference with cell cycle processes of host cells (4). Moreover, in many coronaviruses, including SARS-CoV, the N protein has high immunogenic activity and is abundantly expressed during infection (5). It can be detected in various patient samples including nasopharyngeal aspirate, urine, and fecal. Both S and N proteins may be potential antigens for serodiagnosis of COVID-19, just as many diagnostic methods have been developed for diagnosing SARS based on S and/or N proteins (6).

SARS-CoV-2 (COVID-19) NSP7 Antibody

9155-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers.

SARS-CoV-2 (COVID-19) NSP7 Antibody

9155-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP7 plays a role in viral RNA synthesis (3,4,5). It forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers.

SARS-CoV-2 (COVID-19) NSP7 Peptide

9155P 0.05 mg
EUR 235.5
Description: SARS-CoV-2 (COVID-19) NSP7 Peptide

SARS-CoV-2 (COVID-19) Membrane Antibody

9157-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) Membrane Antibody

9157-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus. The disease is the cause of the 2019–20 coronavirus outbreak (1). SARS-CoV-2 is the seventh member of the enveloped, positive-stranded RNA viruses that are able to infect humans. The SARS-CoV-2 genome, like other coronaviruses, encodes for multiple structural and nonstructural proteins. The structural proteins include spike protein (S), envelope protein (E), membrane glycoprotein (M), nucleocapsid phosphoprotein (N), and the nonstructural proteins include open reading frame 1ab (ORF1ab), ORF3a, ORF6, ORF7a, ORF8, and ORF10 (2).The membrane (M) protein or matrix protein is the most abundant structural protein and defines the shape of the viral envelope (3). It is an integral membrane protein involved in the budding of the viral particles and interacts with S (Spike) protein. It involves in organization of the nucleoprotein inside, which includes many copies of the N (nucleocapsid) protein bound to the genomic RNA. The M protein holds dominant cellular immunogenicity and has been determined as a protective antigen in humoral responses, which suggests it would serve as a potential target in vaccine design (4).

SARS-CoV-2 (COVID-19) Membrane Peptide

9157P 0.05 mg
EUR 235.5
Description: SARS-CoV-2 (COVID-19) Membrane Peptide

SARS-CoV-2 (COVID-19) NSP8 Antibody

9159-002mg 0.02 mg
EUR 229.7
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

SARS-CoV-2 (COVID-19) NSP8 Antibody

9159-01mg 0.1 mg
EUR 594.26
Description: Coronavirus disease 2019 (COVID-19), formerly known as 2019-nCoV acute respiratory disease, is an infectious disease caused by SARS-CoV-2, a virus closely related to the SARS virus (1). The disease is the cause of the 2019–20 coronavirus outbreak (2). The structure of 2019-nCoV consists of the following: a spike protein (S), hemagglutinin-esterease dimer (HE), a membrane glycoprotein (M), an envelope protein (E) a nucleoclapid protein (N) and RNA. NSP8 plays a role in viral RNA synthesis (3,4,5). Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, it may synthesize substantially longer products than oligonucleotide primers (6).

Leave a Comment

Your email address will not be published.